

Role of New Scientific Approaches in Tamper Detection for Nuclear Security

Tessa M. Piñon, Ph.D.

The Pennsylvania State University

CSIS Series: Project on Nuclear Issues (PONI) 2015 Winter Conference

DISTRIBUTION STATEMENT A:

Approved for public release; distribution is unlimited

Challenges of securing weapons, installations, and materials

- Complexity of today's multi-polar nuclear world poses significant challenges for safeguarding nuclear materiel
- Securing materials and controlling unattended areas present technical and operational challenges
- Concerns about the "sophisticated adversary"
 - Rapid advancements and availability of science and technology may make new spoofing methods easier to employ

What can tamper-indicating devices accomplish?

- Security: Provide indelible and unambiguous evidence of intrusion in real-time
- Verification: Assist with assuring compliance with international nuclear agreements
- Inventory control: Reduce threats of proliferation, theft, vandalism, and sabotage of nuclear materials

Conventional physical security devices employed today

Fiber Optic Seal

Source: http://web.ornl.gov/ sci/nsed/gstd/

Cobra Seal (Passive)

Electro Optical Sealing System (Active)

Source: H. Undem, PNNL, 2008, http://web.ornl.gov/sci/nsed/outreach/present ation/2011/Undem.pdf

Passive methods	Active methods
*Adhesive labels	*Electronic seals
*Foils, films	*Fiber optic seals
*Wires, cables	
Glitter paint seals	
*Simple tags and locks	

*Source: R.G. Johnston, 2001, http://cns.miis.edu/npr/pdfs/81j ohn.pdf

These devices may not be the complete solution!

The need for new approaches

"Tamper-proof" devices deemed adequate today may not be tomorrow

- The risk of technological surprise is too great
- It is important to reexamine assumptions since mature technologies today will evolve over time
- Better tamper-indicating approaches are sorely needed to ensure compliance with treaties and nonproliferation agreements

Source: DTRA Thrust Area 5, J9-BA

Quantum science approaches for tamper detection

SCIENCE OPPORTUNITIES:

- Close vulnerability gaps in classical optical sensors
 - Apply techniques from quantum physics for realizing "quantum seals"*
 - Thwart "middle-man attacks" of intercepting-resending optical signals

Materials science approaches for tamper detection

SCIENCE OPPORTUNITIES:

- Develop "smart" materials that sense and respond to their environment
 - Elicit response from mechanical pressure (e.g. touch)*, chemicals, temperature, radiation, and other stimuli
 - Creation of unique "fingerprints" when material is touched*
- Smart materials could be integrated with electronic systems
 - Alert and respond to a tampering incident in real-time
 - Log when incident occurred

PENNSTATE

*Source: Peng Jiang, 2015 DTRA BRTR presentation

New markers for inventory control

There is a need to ensure continuity of chain of custody of materiel

SCIENCE OPPORTUNITIES:

- New methods for tagging materials
- Laser surface authentication for seals*
 - Make unique surface textures that are difficult to reproduce*
- Consider dual-use technologies
 - Anti-counterfeit security labels used in consumer products and currency purposes

*Sources: R.D. Murphy, *et al.* (2013) *Appl Phys Lett,* 102(21). David P. Adams, 2015 DTRA BRTR presentation

Opportunity for polymer opals in security printing?

Concluding Points

- New scientific avenues can shape landscape for cooperative international nuclear policy
 - Tamper-indicating device(s) serve as one measure for ensuring confidence in treaty compliance among nations
 - Emerging scientific discoveries may help define new treaty conditions and verification capabilities
- Element of science "push" for nonproliferation treaties and agreements
 - Consider future treaties 10-20 years from now ("treaty after next")
- Consider emerging areas of science and engineering
 - Possible opportunities for dual-use technologies (e.g. commercial sector)

PENNSTATE

CTBTO OSI exercise

Acknowledgments

- Defense Threat Reduction Agency (DTRA)
 - Thrust Area 5, Basic and Applied Sciences directorate (J9-BA)
- DTRA Basic Research Technical Review, Springfield, VA (open to the public)
 - DTRA funded Principal Investigators

DISCLAIMER: Statements and opinions in this presentation do not represent the views of the Defense Threat Reduction Agency.

